El Hubble desvela una década de cambios atmosféricos en los planetas gigantes del sistema solar

Desde 2014, el telescopio espacial Hubble ha estado observando las dinámicas atmosféricas de los gigantes gaseosos del sistema solar, los planetas Júpiter, Saturno, Urano y Neptuno, gracias al programa OPAL (Outer Planet Atmospheres Legacy). Este proyecto, que cumple una década de operaciones en 2024, ha generado un archivo sin precedentes de imágenes y datos que revelan los cambios y fenómenos que ocurren en las atmósferas de estos planetas a lo largo del tiempo.

Una mirada única a los planetas gigantes

Los planetas exteriores del sistema solar comparten algunas características clave: poseen atmósferas profundas, carecen de superficies sólidas y presentan sistemas climáticos únicos y dinámicos. Las observaciones del Hubble, con su alta resolución espacial, han permitido rastrear tormentas, cinturones nubosos, velocidades de viento y otros fenómenos atmosféricos. Además, estas investigaciones son fundamentales para entender cómo funcionan los climas en planetas similares alrededor de otras estrellas.

Gracias al programa OPAL, que realiza observaciones anuales durante las oposiciones de cada planeta (cuando están más cerca de la Tierra), el Hubble ha podido documentar algunos de los eventos más fascinantes y misteriosos en estos gigantes gaseosos y helados.

Evolución de las atmósferas de los planetas gaseosos durante una década de observaciones anuales del Hubble
Póster conmemorativo de los diez años de observaciones del programa OPAL. Créditos: NASA/ESA

Júpiter: un titán en constante movimiento

El gigante del sistema solar, Júpiter, presenta cinturones nubosos llenos de colores cambiantes, tormentas y vientos de cizalla. El Hubble ha seguido de cerca la evolución de ciclones, anticiclones y, por supuesto, la icónica Gran Mancha Roja, la tormenta más grande del sistema solar. Este vórtice anticiclónico, aunque se ha reducido en las últimas décadas, sigue siendo un área de estudio crucial.

Gracias a las observaciones en el ultravioleta, OPAL ha detectado fenómenos únicos como óvalos oscuros que solo son visibles en estas longitudes de onda. Estos descubrimientos complementan las observaciones de misiones como JUICE, de la Agencia Espacial Europea, que actualmente viaja hacia el sistema joviano para estudiar sus lunas Ganímedes, Calisto y Europa.

El planeta Júpiter y su Gran Mancha Roja captado por el telescopio espacial Hubble
Júpiter captado por el telescopio Hubble en 2021. Créditos: NASA, ESA, Amy Simon (NASA-GSFC), Michael H. Wong (UC Berkeley)

Saturno: estaciones y misterios en sus anillos

A pesar de que el programa OPAL solo ha cubierto un cuarto de la órbita de 29 años de Saturno, ha revelado cambios estacionales en su atmósfera. La inclinación axial de Saturno, a diferencia de Júpiter, permite que tenga estaciones, y el Hubble ha documentado variaciones en los colores de sus nubes y su velocidad de viento, posiblemente relacionadas con la altura de las capas atmosféricas. Estos cambios podrían ser periódicos, pero será necesario observar una órbita completa para confirmarlo.

Otro fenómeno estudiado son los enigmáticos radios oscuros de los anillos de Saturno. Detectados por primera vez por la Voyager 2 en 1981 y estudiados más tarde por la misión Cassini, el Hubble ha documentado la aparición y desaparición de estos radios transitorios, que giran alrededor del planeta en apenas unas rotaciones antes de desaparecer.

En 2025, los anillos de Saturno estarán alineados con la Tierra, haciendo que parezcan «desaparecer» temporalmente desde nuestra perspectiva, un evento que promete ser uno de los momentos astronómicos destacados del año.

El planeta Saturno y sus anillos captado por el telescopio espacial Hubble
Saturno captado por el Hubble en 2019. Créditos: NASA, ESA, Amy Simon (NASA-GSFC), Michael H. Wong (UC Berkeley)

Urano: estaciones extremas y tormentas de metano

El eje de rotación de Urano está inclinado casi 98° con respecto al plano de su órbita, provocando estaciones extremas que duran 42 años. Las observaciones del Hubble tras el equinoccio de primavera del planeta han permitido captar tormentas activas y nubes de cristales de hielo de metano en su atmósfera. Además, OPAL ha detectado una neblina fotoquímica sobre el polo norte del planeta, con pequeñas tormentas al borde del límite polar.

El planeta Urano y sus anillos captado por el telescopio espacial Hubble
Urano captado por el Hubble en 2022. Créditos: NASA, ESA, STScI, A. Simon (NASA-GSFC), M. H. Wong (UC Berkeley), J. DePasquale (STScI)

Neptuno: manchas oscuras y el Sol como protagonista inesperado

En Neptuno, las manchas oscuras de su atmósfera, observadas por primera vez por la Voyager 2 en 1989, han sido objeto de seguimiento gracias al programa OPAL. Estas estructuras, aunque menos duraderas que la Gran Mancha Roja de Júpiter, tienen ciclos de vida de entre dos y seis años. El Hubble ha documentado la formación, migración y disipación de estas manchas, ofreciendo un vistazo al ciclo completo de su existencia.

Un hallazgo inesperado de OPAL ha sido la relación entre la abundancia de nubes en Neptuno y el ciclo de actividad solar de 11 años. Este descubrimiento plantea preguntas interesantes sobre cómo el Sol, a pesar de estar a más de 4.500 millones de km de distancia, influye en la atmósfera de este lejano gigante helado.

El planeta Neptuno captado por el telescopio espacial Hubble
Urano captado por el Hubble en 2022. Créditos: NASA, ESA, STScI, A. Simon (NASA-GSFC), M. H. Wong (UC Berkeley), J. DePasquale (STScI)

Una década de avances y un futuro prometedor

Tras diez años de operaciones, el programa OPAL ha demostrado ser una herramienta clave para comprender la meteorología de los planetas gigantes del sistema solar. Desde las dinámicas de las tormentas de Júpiter hasta las estaciones extremas de Urano y los enigmas de los anillos de Saturno, las observaciones del Hubble han proporcionado una base sólida para futuras investigaciones. Además, estos datos complementan misiones en curso como JUICE y enriquecerán las observaciones que se realicen con el telescopio James Webb.


Fuentes y más información:

Más información en NoSoloSputnik!:

La misión Europa Clipper de la NASA ya está rumbo a Júpiter

Después de décadas de espera y de propuestas que parecían condenadas al olvido, la sonda Europa Clipper ya está en camino hacia el sistema joviano. Su lanzamiento marca el inicio de una nueva etapa de la NASA en la exploración de los mundos oceánicos del sistema solar, lugares que podrían albergar las condiciones necesarias para la vida. En los próximos años la nave recorrerá el espacio interplanetario hasta alcanzar Júpiter en 2030, donde comenzará a desvelar los secretos de Europa, la luna helada que esconde bajo su superficie un océano global.

El 14 de octubre de 2024, un cohete Falcon Heavy Block 5 de SpaceX despegó desde la rampa 39A del Centro Espacial Kennedy en Florida, llevando a bordo esta misión de tipo Flagship de la NASA. Se trata de una de las exploraciones más ambiciosas de las últimas décadas, diseñada para responder a una de las preguntas más importantes de la ciencia planetaria: ¿reúne el océano de Europa las condiciones adecuadas para la vida? Tras colocarse en una órbita de aparcamiento terrestre, la segunda etapa del Falcon Heavy ejecutó una maniobra que situó a la nave en trayectoria de escape, rumbo a Marte. Allí realizará en febrero de 2025 una maniobra de asistencia gravitatoria, a la que seguirá un sobrevuelo de la Tierra en diciembre de 2026. Con esta compleja ruta interplanetaria, Europa Clipper alcanzará Júpiter en abril de 2030, un año antes que la sonda europea JUICE, que fue lanzada en abril de 2023.

La estrategia de vuelo fue cuidadosamente elegida. Originalmente, el plan era lanzar la misión en un cohete SLS Block 1 de la NASA, lo que habría permitido un trayecto directo hasta Júpiter en poco más de dos años. Sin embargo, los continuos retrasos y costes del SLS llevaron a optar por el Falcon Heavy, que, aunque menos potente, ofrece una opción viable y más económica. El precio a pagar es una ruta más larga, que se apoya en las asistencias gravitatorias de Marte y la Tierra para ganar la velocidad necesaria antes de alcanzar el sistema joviano.

La misión principal de Europa Clipper es determinar las propiedades del océano interior de Europa y comprender si ese entorno podría ser habitable. Con un diámetro de 3.122 km, apenas algo menor que la Luna terrestre, Europa posee sin embargo el doble de agua que todos los océanos de la Tierra juntos, la mayor parte en estado líquido bajo una corteza de hielo de entre 10 y 40 km de espesor. Las fuerzas de marea provocadas por la enorme gravedad de Júpiter generan calor en su interior, manteniendo el océano líquido y en constante interacción con la superficie helada.

Europa es uno de los mejores candidatos del sistema solar en la búsqueda de vida extraterrestre. Sin embargo, explorarla directamente supone un desafío enorme: el satélite orbita dentro de los potentes cinturones de radiación jovianos, lo que limita la vida útil de cualquier nave en su superficie u órbita. Por ello, la NASA diseñó una estrategia intermedia: en lugar de situar a Europa Clipper en órbita de Europa, la nave permanecerá orbitando Júpiter y realizará 49 sobrevuelos cercanos, algunos a tan solo 25 km de altitud sobre la superficie helada. Esta técnica permitirá obtener datos de alta resolución minimizando la exposición acumulada a la radiación.

Características de la nave

Europa Clipper es una nave de gran tamaño, con una masa total de 5,8 toneladas al lanzamiento, incluyendo 2,75 toneladas de combustible. Su estructura principal está formada por un cilindro central de 3 m de largo y 1,5 m de diámetro, que alberga los tanques de combustible y oxidante. Sobre este se sitúa la caja de aviónica, fabricada en una aleación de aluminio y zinc con paredes de 9,2 mm de espesor, diseñada para resistir la radiación del entorno joviano.

La sonda cuenta con una antena de alta ganancia de 3 m de diámetro para transmitir los datos a la Tierra a través de la Red de Espacio Profundo de la NASA. El sistema de propulsión incluye 24 propulsores de hidrazina de 22 N de empuje, distribuidos en grupos de cuatro en los extremos de mástiles que sobresalen de la estructura principal.

Uno de los elementos más llamativos son sus enormes paneles solares, de 14,2 m de largo y 4,1 m de ancho cada uno. En conjunto suman una superficie de 90 m², necesaria para generar la energía suficiente a 5 UA del Sol, donde la intensidad de la luz solar es apenas un 4% de la que recibimos en la Tierra. Estos paneles, construidos por Airbus Defence and Space en Europa, convierten a Europa Clipper en la tercera misión con energía solar que opera en el sistema joviano, después de Juno y JUICE.

El mástil del magnetómetro mide 8,55 m, mientras que las antenas del radar, situadas en los paneles solares, alcanzan los 17,6 m. Con los paneles desplegados, la envergadura de la nave supera los 30 m, lo que la convierte en una de las sondas más grandes jamás construidas para la exploración planetaria.

Instrumentación científica

Europa Clipper transporta nueve instrumentos científicos principales que abordarán distintos aspectos de la geología, química, atmósfera y entorno de Europa:

  • REASON (Radar for Europa Assessment and Sounding: Ocean to Near-surface): un radar de doble frecuencia capaz de sondear hasta 35 km bajo la superficie, midiendo el espesor de la corteza helada y detectando posibles lagos internos.
  • MISE (Mapping Imaging Spectrometer for Europa): un espectrómetro infrarrojo que cartografiará la composición superficial, con especial atención a los materiales que puedan proceder del océano interior.
  • E-THEMIS (Europa Thermal Emission Imaging System): cámara infrarroja que elaborará mapas térmicos de la superficie para identificar zonas activas y estudiar la transferencia de calor.
  • EIS (Europa Imaging System): sistema de dos cámaras, gran angular (WAC) y de alta resolución (NAC), que generará un mapa del 80% de la superficie de Europa, con hasta 25 m por píxel en las regiones de mayor interés.
  • Europa-UVS (Ultraviolet Spectrograph): espectrógrafo ultravioleta diseñado para detectar posibles géiseres de agua y estudiar la tenue exosfera de Europa.
  • MASPEX (Mass Spectrometer for Planetary Exploration/Europa): espectrómetro de masas que analizará la composición química de partículas y gases, tanto de géiseres como de la atmósfera.
  • SUDA (SUrface Dust Analyzer): medirá partículas de polvo eyectadas desde la superficie o procedentes de posibles plumas de agua.
  • ECM (Europa Clipper Magnetometer): estudiará los cambios en el campo magnético inducidos por el océano salino interno, lo que permitirá inferir su volumen, salinidad y profundidad.
  • PIMS (Plasma Instrument for Magnetic Sounding): complementará al magnetómetro midiendo el plasma alrededor de Europa para separar los efectos locales de los inducidos por el océano.

Además, la misión realizará experimentos de radio ciencia para estudiar la gravedad y la estructura interna del satélite.

Trayectoria hacia Júpiter

El camino de Europa Clipper hasta Júpiter será largo y meticulosamente calculado. Tras el sobrevuelo de Marte en febrero de 2025 y el de la Tierra en diciembre de 2026, la sonda quedará en una trayectoria directa hacia el sistema joviano. En abril de 2030 encenderá sus motores para insertarse en órbita alrededor de Júpiter. El primer sobrevuelo cercano de Europa tendrá lugar en marzo de 2031, y a lo largo de tres años realizará un total de 49 encuentros a altitudes que variarán entre 25 y 100 km.

El objetivo es aprovechar cada sobrevuelo para cubrir diferentes regiones del satélite: llanuras heladas, crestas y fracturas, regiones con depósitos recientes y áreas donde se sospecha que el océano podría estar en contacto con la superficie. Los sobrevuelos también permitirán estudiar cómo la radiación de Júpiter afecta a la superficie de Europa y cómo esta se renueva con el tiempo.

Lo que está en juego

La misión Europa Clipper es considerada de tipo Flagship, la categoría más ambiciosa y costosa de la NASA. Su desarrollo ha superado los 5.200 millones de dólares y ha requerido casi dos décadas de planificación, rediseños y debates políticos. Su importancia científica es enorme: nunca antes una nave espacial había llevado un conjunto tan avanzado de instrumentos para estudiar un mundo oceánico.

Si bien Europa Clipper no está diseñada para detectar vida directamente, sus datos serán necesarios para evaluar si el océano de Europa posee las condiciones adecuadas para la biología. Conocer la salinidad, profundidad, temperatura y la posible existencia de compuestos orgánicos en contacto con la superficie nos acercará a responder si este océano puede ser un entorno habitable.

De cumplirse el calendario, en 2034 la misión primaria habrá concluido. Entonces, si la nave sigue operativa, podría prolongarse hasta agotar su combustible. Para evitar cualquier riesgo de contaminación biológica en Europa, el plan es desorbitar la nave y hacerla impactar contra Ganímedes, cuya corteza helada es mucho más gruesa y no presenta contacto directo con un océano interior.

Un nuevo capítulo en la exploración del sistema solar

Con el despegue de Europa Clipper, comienza una de las aventuras más esperadas de la exploración planetaria. Durante años, esta misión nos proporcionará imágenes e información sin precedentes sobre uno de los lugares más intrigantes del sistema solar. Mientras la comunidad científica prepara sus modelos y teorías para interpretar los datos, los aficionados al espacio cuentan los días para que la nave alcance su destino.

En menos de una década, podremos empezar a resolver una de las grandes preguntas de la astrobiología: ¿podría el océano de Europa albergar vida? La respuesta está aún por llegar, pero el viaje ya ha comenzado.

Más información:
Página de la misión de la NASA
Página de la misión del JPL

Primeras imágenes de Júpiter del Telescopio infrarrojo James Webb

Una vez publicadas y puestas a disposición del público de las primeras imágenes científicas del Telescopio Espacial James Webb se hicieron públicas también todos los datos del período de puesta en servicio del telescopio. Estos datos incluyen las primeras imágenes de un planeta de nuestro vecindario, en este caso del gigante Júpiter. Las imágenes publicadas demuestran la capacidad del telescopio para observar objetivos de nuestro vecindario solar que se mueven relativamente a gran velocidad y producir imágenes y espectros con un detalle sin precedentes.

Júpiter en el centro, y su luna Europa a la izquierda, a través del filtro de 2,12 micras del instrumento NIRCam del telescopio espacial James Webb. 
Créditos: NASA, ESA, CSA y B. Holler y J. Stansberry (STScI)

En las imágenes se muestran detalles de la atmósfera joviana, la Gran Mancha Roja, el tenue y fino sistema de anillos y tres lunas, Europa, Tebe y Metis. La claridad y calidad de las imágenes son asombrosas e impactantes. Futuras observaciones se dirigirán a producir espectros de las brumas del polo sur de la luna Encélado de Saturno.

Júpiter y sus lunas Europa, Tebe y Metis a través del filtro de 2,12 micras del instrumento NIRCam a la izquierda y a través del filtro de 3,23 micras de NIRCam a la derecha. 
Créditos: NASA, ESA, CSA y B. Holler y J. Stansberry (STScI)

El Telescopio Espacial James Webb es el telescopio de ciencia espacial más grande, poderoso y complejo del mundo jamás construido, dedicado a estudiar en el infrarrojo cercano y lejano desde el punto L2 de lagrange del sistema Tierra-Luna. Es un proyecto liderado por la NASA y la contribución de las agencias espaciales europea y canadiense.

Júpiter y algunas de sus lunas a través del filtro de 3,23 micras de NIRCam. 
Créditos: NASA, ESA, CSA y B. Holler y J. Stansberry (STScI)

El Hubble revela cambios atmosféricos en los planetas gigantes del sistema solar

El Telescopio Espacial Hubble de la NASA, y de la ESA en menor medida, ha completado su gran gira anual por el Sistema Solar exterior. Este es el reino de los planetas gigantes Júpiter, Saturno y los planetas helados Urano y Neptuno, extendiéndose hasta 30 veces la distancia entre la Tierra y el Sol. A diferencia de los planetas rocosos como la Tierra y Marte que se apiñan cerca del calor del Sol, estos mundos lejanos están compuestos principalmente de masas gaseosas frías de hidrógeno, helio, amoníaco, metano y otros gases traza alrededor de un gran núcleo.

Las imágenes tomadas por el Telescopio Hubble forman parte de mapas anuales como parte del programa OPAL (Outer Planets Atmospheres Legacy). Cada año proporciona fotografías y datos acerca de los planetas para analizar los cambios en sus tormentas, vientos y nubes.

Continúa leyendo El Hubble revela cambios atmosféricos en los planetas gigantes del sistema solar

La misión Lucy de la NASA despega con éxito rumbo a los asteroides troyanos de Júpiter

El pasado sábado 16 de octubre la sonda Lucy de la NASA despegó con éxito a bordo de un lanzador Atlas-V de ULA desde Cabo Cañaveral rumbo al sistema solar exterior para estudiar los asteroides troyanos durante los próximos 12 años y 4.000 millones de km.

Los asteroides troyanos son aquellos que se encuentran en los puntos de Lagrange L4 y L5 de la órbita de un planeta, en este caso de Júpiter, esto es, 60º por delante y 60º por detrás del gigante gaseoso. Aunque se les denomine también troyanos, a los que se encuentran en el punto L4 también se les denomina griegos o el grupo de Aquiles.

Impresión artística de la sonda Lucy. Créditos: NASA/GSFC

Para llegar hasta allí, la sonda deberá de realizar dos asistencias gravitatorias con nuestro planeta y en abril de 2025 realizará un encuentro con el asteroide Donaldjohanson del cinturón de asteroides (situado entre Marte y Júpiter). A continuación llegará al punto L4 donde sobrevolará los troyanos Eurybates (y su luna Queta) y Polymele en 2027 y Leucus y Orus en 2028. Después deberá realizar otra asistencia gravitatoria con la Tierra para llegar al punto L5 donde sobrevolará Patroclus y su luna Menoetius en 2033.

Objetivos de la misión Lucy. Créditos: NASA/GSFC

La misión, con un coste de 980 millones de dólares, es la 13º misión del programa de bajo coste Discovery de la NASA y la segunda misión del programa, tras la misión Juno a Júpiter, con destino al sistema solar exterior.

La sonda Lucy tiene una masa total de 1550 kg y cuenta con 3 instrumentos principales, derivados de otros ya usados en otras misiones anteriores: el instrumento L’RALPH que consta del espectrómetro y cámara infrarroja LISA y de la cámara a color MVIC, la cámara de alta resolución L’LORRI y el espectrómetro infrarrojo L’TES. Además de otras cámaras de navegación lleva el instrumento Lucy Radio para estudiar la masa de los cuerpos visitados.

Los asteroides troyanos son cuerpos heterogéneos de composiciones muy diferentes y algunos con órbitas inestables, que se creen fueron capturados después de la formación del sistema solar durante la migración planetaria hace 400 millones de años provocada por Júpiter y Saturno. Según el modelo de Niza, la teoría de formación del sistema solar más extendida, el caos reinó durante la formación temprana del sistema solar, y encontrar objetos con composiciones diferentes a los que se pueden encontrar en el cinturón de asteroides principal situado entre las órbitas de Marte y Júpiter refutaría en algún punto más esta teoría.

Impresión artística de los asteroides troyanos de Júpiter. Créditos: NASA/WISE
Localización de los asteroides del Cinturón de Asteroides principal y los asteroides troyanos de Júpiter. Créditos: Diogo Sergio.

Lucy toma su nombre de los restos del ancestro humano de 3,2 millones de años de antigüedad encontrado en Etiopía hace medio siglo. El descubridor, Donald Johanson (quien da su nombre al primer objeto de estudio de esta misión) se inspiró en la canción de los Beatles «Lucy in the sky with diamonds» publicada en 1967 para nombrar al fósil. Por ello, se puede decir, que la misión de la sonda Lucy será la de investigar estos cuerpos «fósiles» del sistema solar y poder entender mejor cómo se formaron los planetas y la actual distribución del sistema solar. Doce años tiene por delante.

Imagen del lanzamiento del cohete Atlas-V con la misión Lucy rumbo a los asteroides troyanos. Créditos: NASA