Un nuevo retrato del sistema solar: Lucy visita Donaldjohanson

El pasado 20 de abril la sonda Lucy de la NASA realizó un sobrevuelo a 960 km de distancia del asteroide (52246) Donaldjohanson, un cuerpo del cinturón principal situado entre las órbitas de Marte y Júpiter. Tenemos por tanto un nuevo retrato en la creciente galería de mundos menores visitados por exploradores robóticos y marca otro paso significativo en el desarrollo operativo de la misión Lucy, cuyo objetivo principal es estudiar los asteroides troyanos de Júpiter a partir de 2027.

Durante el sobrevuelo, Lucy pasó a una velocidad relativa de 13,4 km/s y registró imágenes y datos con sus tres instrumentos científicos principales: la cámara L’LORRI (Long Range Reconnaissance Imager), el espectrómetro infrarrojo térmico L’TES y el conjunto de generador de imágenes en color y espectrómetro L’Ralph. Las imágenes iniciales fueron tomadas a unos 1.100 km de distancia, aproximadamente 40 segundos antes del punto de máxima aproximación, debido a restricciones de orientación para evitar el deslumbramiento solar. La secuencia de observación fue totalmente autónoma, ya que las señales de radio tardan más de 12 minutos en llegar a la Tierra, lo que imposibilita el control interactivo.

Las primeras imágenes revelan un objeto de forma elongada, con una estructura de contacto binario: dos lóbulos de tamaño desigual unidos por una estrecha garganta. Esta configuración recuerda a la de asteroides como Itokawa o Toutatis, aunque en este caso los lóbulos parecen ser estructuras sólidas y no una amalgama de escombros. Donaldjohanson presenta varios cráteres de gran tamaño y afloramientos rocosos, indicadores de un pasado geológicamente activo. Su forma, que algunos han descrito como parecida a un par de conos de helado enfrentados, es resultado de una colisión que fragmentó el asteroide 163 Erígone hace unos 150 millones de años, dando origen a este fragmento más joven.

Los datos aún están en proceso de descarga y se espera que tarden una semana en completarse. Los equipos científicos realizarán un análisis detallado de la estructura superficial, la composición mineral y las propiedades térmicas del asteroide. Este segundo sobrevuelo de la misión —tras el de Dinkinesh en noviembre de 2023— ha sido considerado como un ensayo técnico completo, diferente del anterior, que sirvió principalmente como prueba de los sistemas de navegación autónoma.

El asteroide Donaldjohanson fue descubierto el 2 de marzo de 1981 por Schelte Bus y recibió su nombre en 2015 en honor al paleoantropólogo Donald Johanson, descubridor del fósil homínido conocido como Lucy, cuyo nombre también fue adoptado para la misión. De este modo, el asteroide se integra simbólicamente en el recorrido de una sonda destinada a esclarecer los orígenes del Sistema Solar de la misma forma que su homónimo fósil aportó claves sobre los orígenes de la humanidad.

Lucy fue lanzada el 16 de octubre de 2021 y ha empleado dos asistencias gravitatorias terrestres para modificar su órbita en dirección a los troyanos de Júpiter. Antes de llegar a ellos, el diseño de la misión permitió incorporar estos encuentros con asteroides del cinturón principal, sirviendo tanto para calibrar los instrumentos como para entrenar al equipo en secuencias complejas de sobrevuelo. El primer encuentro con Dinkinesh reveló un asteroide doble, compuesto por un cuerpo principal de 719 metros y una luna binaria llamada Selam, compuesta de dos cuerpos de similar tamaño de aproximadamente 210 y 230 metros.

Los próximos objetivos de Lucy serán los asteroides troyanos del punto de Lagrange L4 del sistema Júpiter-Sol: 3548 Eurybates y su satélite Queta (12 de agosto de 2027), seguido por 15094 Polymele y su satélite (15 de septiembre de 2027), 11351 Leucus (18 de abril de 2028) y 21900 Orus (11 de noviembre de 2028). Posteriormente, tras un nuevo paso por las cercanías de la Tierra, Lucy se dirigirá al punto L5 para sobrevolar el sistema binario 617 Patroclus–Menoetius el 2 de marzo de 2033. Si al finalizar la misión primaria los sistemas de a bordo siguen operativos y queda suficiente combustible, se evaluará la posibilidad de extender la misión hacia otros cuerpos del Sistema Solar exterior.

Representación a escala de la nave espacial Lucy junto a una figura humana
Representación a escala de la sonda Lucy de la NASA junto a una figura humana para visualizar su tamaño real. Esta nave fue diseñada para estudiar los asteroides troyanos de Júpiter durante una misión de 12 años.

Aunque Donaldjohanson no formaba parte del catálogo original de objetivos científicos, su sobrevuelo constituye un hito al tratarse de un fragmento relativamente joven del cinturón principal, un entorno habitualmente dominado por cuerpos más antiguos y evolucionados. El análisis del material de su superficie podría ofrecer pistas sobre la distribución de los componentes primordiales que dieron forma a los planetas rocosos. Al integrar este nuevo retrato en la familia de cuerpos explorados, Lucy amplía no solo nuestra comprensión de los asteroides, sino también de los procesos dinámicos que estructuran el Sistema Solar desde sus primeras etapas.

Siguientes objetivos de la misión Lucy:

Asteroide Fecha prevista de sobrevuelo Particularidad
3548 Eurybates 12 agosto 2027 Asteroide troyano con satélite (Queta)
15094 Polymele 15 septiembre 2027 Asteroide troyano con satélite
11351 Leucus 18 abril 2028 Asteroide troyano del grupo L4
21900 Orus 11 noviembre 2028 Asteroide troyano del grupo L4
617 Patroclus–Menoetius 2 marzo 2033 Sistema binario del grupo L5

Más información:

La misión Lucy de la NASA despega con éxito rumbo a los asteroides troyanos de Júpiter

El pasado sábado 16 de octubre la sonda Lucy de la NASA despegó con éxito a bordo de un lanzador Atlas-V de ULA desde Cabo Cañaveral rumbo al sistema solar exterior para estudiar los asteroides troyanos durante los próximos 12 años y 4.000 millones de km.

Los asteroides troyanos son aquellos que se encuentran en los puntos de Lagrange L4 y L5 de la órbita de un planeta, en este caso de Júpiter, esto es, 60º por delante y 60º por detrás del gigante gaseoso. Aunque se les denomine también troyanos, a los que se encuentran en el punto L4 también se les denomina griegos o el grupo de Aquiles.

Impresión artística de la sonda Lucy. Créditos: NASA/GSFC

Para llegar hasta allí, la sonda deberá de realizar dos asistencias gravitatorias con nuestro planeta y en abril de 2025 realizará un encuentro con el asteroide Donaldjohanson del cinturón de asteroides (situado entre Marte y Júpiter). A continuación llegará al punto L4 donde sobrevolará los troyanos Eurybates (y su luna Queta) y Polymele en 2027 y Leucus y Orus en 2028. Después deberá realizar otra asistencia gravitatoria con la Tierra para llegar al punto L5 donde sobrevolará Patroclus y su luna Menoetius en 2033.

Objetivos de la misión Lucy. Créditos: NASA/GSFC

La misión, con un coste de 980 millones de dólares, es la 13º misión del programa de bajo coste Discovery de la NASA y la segunda misión del programa, tras la misión Juno a Júpiter, con destino al sistema solar exterior.

La sonda Lucy tiene una masa total de 1550 kg y cuenta con 3 instrumentos principales, derivados de otros ya usados en otras misiones anteriores: el instrumento L’RALPH que consta del espectrómetro y cámara infrarroja LISA y de la cámara a color MVIC, la cámara de alta resolución L’LORRI y el espectrómetro infrarrojo L’TES. Además de otras cámaras de navegación lleva el instrumento Lucy Radio para estudiar la masa de los cuerpos visitados.

Los asteroides troyanos son cuerpos heterogéneos de composiciones muy diferentes y algunos con órbitas inestables, que se creen fueron capturados después de la formación del sistema solar durante la migración planetaria hace 400 millones de años provocada por Júpiter y Saturno. Según el modelo de Niza, la teoría de formación del sistema solar más extendida, el caos reinó durante la formación temprana del sistema solar, y encontrar objetos con composiciones diferentes a los que se pueden encontrar en el cinturón de asteroides principal situado entre las órbitas de Marte y Júpiter refutaría en algún punto más esta teoría.

Impresión artística de los asteroides troyanos de Júpiter. Créditos: NASA/WISE
Localización de los asteroides del Cinturón de Asteroides principal y los asteroides troyanos de Júpiter. Créditos: Diogo Sergio.

Lucy toma su nombre de los restos del ancestro humano de 3,2 millones de años de antigüedad encontrado en Etiopía hace medio siglo. El descubridor, Donald Johanson (quien da su nombre al primer objeto de estudio de esta misión) se inspiró en la canción de los Beatles «Lucy in the sky with diamonds» publicada en 1967 para nombrar al fósil. Por ello, se puede decir, que la misión de la sonda Lucy será la de investigar estos cuerpos «fósiles» del sistema solar y poder entender mejor cómo se formaron los planetas y la actual distribución del sistema solar. Doce años tiene por delante.

Imagen del lanzamiento del cohete Atlas-V con la misión Lucy rumbo a los asteroides troyanos. Créditos: NASA

La sonda DAWN desciende su órbita a tan solo 1500km de Ceres

Actualmente la sonda DAWN se encontraba orbitando el planeta enano Ceres a 4.400km de distancia de la superficie, denominada órbita «Survey». En estos días reducirá la distancia usando sus motores iónicos hasta la órbita de mapeo denominada HAMO (High-Altitude Mapping Orbit). Esta maniobra estaba prevista hace unas semanas pero un error de navegación de la sonda ha hecho retrasarla. Está previsto que llegue a dicha órbita a mediados de agosto donde se obtendrán imágenes de calidad sin precedentes.

Esperamos que a esa distancia se pueda arrojar algo de luz sobre el misterio de los puntos brillantes de aproximadamente 9 km en el cráter Occator. Dichos puntos podrían ser hielo, sal u otro tipo de elemento brillante. Además hay pequeñas estructuras como montañas o colinas que sobresalen en llanuras o cuencas de impacto que difícilmente hayan sido generadas por impactos o procesos de mareas como en otros mundos.
Mientras tanto, tenemos material suficiente para especular sobre la procedencia de estos misteriosos accidentes naturales en Ceres, el mayor asteroide del Sistema Solar que ascendió al más pequeño de los planetas enanos.

Imagen del cráter donde se pueden observar las formaciones brillantes
Imagen del cráter Occator donde se pueden observar las formaciones brillantes. Créditos: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Imagen global de Ceres con una colina sobresaliendo en la parte superior derecha
Imagen global de Ceres con una colina sobresaliendo en la parte superior derecha. Créditos: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Secuencia de rotación de Ceres a 14.600km de distancia
Secuencia de rotación de Ceres a 14.600km de distancia. Créditos: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Mapa de Ceres con los nombres aprobados de 16 cráteres
Mapa de Ceres con los nombres aprobados de 16 cráteres. Créditos: Steve Albers.