El observatorio NuSTAR de la NASA cumple diez años estudiando el universo en rayos X

El Nuclear Spectroscopic Telescope Array de la NASA (NuSTAR) ha cumplido diez años de misión. Fue lanzado por un cohete Pegasus XL desde un avión Lockheed L-1011 «Stargazer» mientras sobrevolaba el océano Pacífico el 13 de junio de 2012.

Durante estos diez años se ha dedicado al estudio de los objetos y sucesos más energéticos del universo, desde lejanos agujeros negros devorando gases de restos de supernovas a emisiones en rayos X de alta energía en la alta atmósfera de Júpiter o los microdestellos en las regiones activas del Sol.

Los rayos X del Sol (en verde y azul) en las observaciones del NuSTAR de la NASA, provienen del gas a una temperatura de más de 3 millones de grados Celsius. Los datos tomados por el Solar Dynamics Observatory de la NASA (en naranja) muestran material a una temperatura de alrededor de 1 millón de grados Celsius.
Créditos: NASA/JPL-Caltech/GSFC.

Uno de los mayores logros de NuSTAR fue realizar la primera medición inequívoca de la rotación de un agujero negro. Además, ha identificado docenas de agujeros negros escondidos detrás de espesas nubes de gas y polvo y ha descubierto cuán energéticas pueden ser las estrellas de neutrones o cómo las estrellas explotan para convertirse en supernovas pudiendo mapear los materiales radioactivos dejados por estas explosiones.

Esta ilustración muestra un agujero negro rodeado por un disco de acreción hecho de gas caliente y un chorro que se extiende hacia el espacio. El telescopio NuSTAR de la NASA ha ayudado a medir la distancia a la que viajan las partículas de estos chorros antes de que se “enciendan” y se conviertan en fuentes de luz brillantes, una distancia también conocida como “zona de aceleración”.
Créditos: NASA/JPL-Caltech.

Como hemos relatado, estas son algunas de las formas en las que el observatorio de rayos X NuSTAR ha proporcionado una nueva mirada al universo y nuestro vecindario próximo durante la última década, añadiendo conocimientos a los obtenidos por otros telescopios espaciales como el Chandra de la NASA o el XMM Newton de la ESA y complementando a otros como el EHT, basado en estaciones de interferometría de muy larga base en diferentes puntos terrestres distribuidos por todo el planeta.

Inicialmente concebido para una misión no superior a los siete años, el equipo de la misión ha afirmado que aún le quedan muchos años de observación. Hasta ahora ha realizado más de 54.000 órbitas a la Tierra a una altura de 600 km. Y muchas más que le quedan al NuSTAR.

NGC 5907 ULX, el púlsar más brillante conocido

La pasada semana se dió a conocer el hallazgo del púlsar más brillante observado hasta la fecha a una distancia de 50 millones de años-luz de nosotros. Tal como publica la revista Science, se llama NGC 5907 ULX. En un segundo, emite la misma cantidad de energía que nuestro Sol en tres años y medio, según informó la NASA. Según el autor de la publicación, Gian Luca Israel del Observatorio Astronómico de Roma, la cantidad de energía liberada supera con creces los modelos establecidos en eventos de este tipo para una estrella de neutrones en acreción. «Este objeto realmente está desafiando nuestra comprensión actual del proceso de acreción de los púlsares de alta luminosidad…» dijo el autor de la publicación.

NGC 5907 ULX es el pulsar más brillante jamás observado
NGC 5907 ULX es el pulsar más brillante jamás observado. Esta imagen comprende los datos de emisión de rayos X (azul / blanco) del telescopio espacial XMM-Newton de la ESA y el observatorio Chandra de rayos X de la NASA, así como datos ópticos de la Sloan Digital Sky Survey (galaxia y estrellas de primer plano). Créditos: ESA/ XMM-Newton, NASA/Chandra y SDSS.

Los púlsares son estrellas de neutrones con una rotación rapidísima, con un diámetro de 20-30 km. Se encuentran altamente magnetizadas con el eje magnético inclinado con respecto al eje de rotación. Se cree que emiten radiación surgida de la aceleración de partículas cargadas por encima de los polos magnéticos. Al girar tan rápido, es posible que el polo magnético de la estrella coincida con la posición de nuestro planeta, permitiendo la observación del mismo, y lo que percibimos por tanto serían pulsos de radiación que se repiten una y otra vez en un corto periodo de tiempo, a modo de faro, debido a su rápida rotación. Actualmente hay en órbita satélites experimentales estudiando diferentes tipos de púlsares para quizás en un futuro las naves espaciales se orienten en el espacio por estas estrellas pulsantes, dado que tienen una precisión comparable a la de un reloj atómico. Continúa leyendo NGC 5907 ULX, el púlsar más brillante conocido