Cuenta atrás para PUNCH: la misión de la NASA que estudiará la heliosfera en 3D

Los cuatro mini satélites de la misión PUNCH (Polarimeter to Unify the Corona and Heliosphere) han llegado a la Base de la Fuerza Espacial Vandenberg en California para su integración final antes del lanzamiento, previsto para principios de 2025. Esta misión de la NASA, desarrollada por el Southwest Research Institute (SwRI), está diseñada para realizar observaciones sin precedentes de la transición entre la corona solar y la heliosfera, un área del espacio clave para comprender cómo el viento solar se expande y evoluciona en el medio interplanetario.

PUNCH está compuesto por cuatro pequeños satélites que, operando en conjunto, captarán imágenes continuas y en tres dimensiones del viento solar desde su formación en la corona hasta su propagación en el espacio. La misión utilizará cámaras sensibles a la luz visible polarizada para observar electrones libres en la heliosfera, permitiendo mapear estructuras como eyecciones de masa coronal (CMEs) y frentes de choque interplanetarios con una precisión sin precedentes.

Objetivos principales de la misión Punch. Créditos: SWRI

Estos datos llenarán una brecha de más de 60 años en la investigación sobre el viento solar, proporcionando una vista global y detallada de un fenómeno que afecta directamente el clima espacial, la seguridad de satélites y astronautas, y las comunicaciones en la Tierra.

Cada uno de los cuatro satélites de PUNCH porta un único instrumento, formando una red de observación distribuida:

  • 1 Narrow Field Imager (NFI): Un coronógrafo compacto que observará la parte más interna de la corona solar, desde 6 hasta 32 radios solares (R☉).
  • 3 Wide Field Imagers (WFI): Telescopios de gran campo basados en el diseño de los instrumentos STEREO/HI, capaces de capturar imágenes de la heliosfera desde 18 hasta 180 R☉.
  • STEAM (X-ray Spectrometer): Un espectrómetro de rayos X desarrollado por estudiantes, que analizará la radiación solar para estudiar la física del calentamiento de la corona.

La sincronización de estos cuatro satélites permitirá construir imágenes en 360°, proporcionando un monitoreo continuo de la evolución del viento solar.

Secuencia de datos procesados de la misión STEREO de la NASA mostrando la expansión de la corona solar mientras se extiende hacia el espacio y da origen al viento solar. Créditos: SWRI

Los satélites PUNCH estarán en una órbita polar sincronizada con el Sol, lo que les permitirá mantener una alineación constante con la estrella durante su misión primaria de dos años. Para evitar interferencias con la Tierra, los satélites estarán separados 120° en fase orbital, asegurando una cobertura ininterrumpida del espacio interplanetario.

Cada ocho minutos, cada satélite tomará una serie de imágenes: una sin polarización y seis imágenes polarizadas, permitiendo reconstrucciones tridimensionales de las estructuras del viento solar. Todos los datos serán enviados a la Tierra, donde serán fusionados para generar un mapa global de la heliosfera en tiempo real.

Uno de los objetivos clave de la misión es mejorar la capacidad de predicción de tormentas solares y eyecciones de masa coronal (CMEs), eventos que pueden generar perturbaciones en la magnetosfera terrestre y afectar redes eléctricas, satélites y sistemas de navegación GPS.

Para esto, PUNCH contará con QuickPUNCH, una herramienta diseñada para reducir el tiempo de procesamiento de datos y proporcionar información útil para la predicción del clima espacial en cuestión de horas en lugar de días. Este sistema servirá como complemento a los telescopios coronográficos a bordo de GOES-U y SWFO-L1, facilitando la detección temprana de eventos solares de alto impacto.

Animación (no a escala) que muestra la corona solar y el viento solar. Créditos: NASA/GSC/Lisa Poje

PUNCH no operará de manera aislada, sino que formará parte de un esfuerzo conjunto con otras misiones dedicadas al estudio del Sol y su influencia en el espacio interplanetario. Los datos obtenidos por sus satélites se complementarán con las observaciones de la Parker Solar Probe, que analiza el plasma solar a distancias extremadamente cercanas a la estrella, proporcionando mediciones directas de sus partículas y campos magnéticos. También trabajará en conjunto con la Solar Orbiter, cuya capacidad para capturar imágenes desde distintos ángulos en el sistema solar permitirá una visión más completa de la evolución del viento solar en el espacio profundo. A su vez, el Solar Dynamics Observatory (SDO) ofrecerá un monitoreo continuo de la actividad solar desde la órbita terrestre, facilitando la identificación de eventos como erupciones y eyecciones de masa coronal desde su origen. La combinación de estos datos permitirá reconstruir con mayor precisión la conexión entre los procesos que ocurren en la corona y su impacto en la heliosfera, proporcionando una visión global y detallada de la interacción entre el Sol y el medio interplanetario.

Las cuatro naves espaciales de la misión PUNCH, aseguradas en sus soportes de aluminio durante las fases finales de integración y pruebas previas al lanzamiento. Créditos: SWRI

Preparación final y cuenta atrás para el lanzamiento

El equipo de PUNCH ya ha completado la fase de integración y pruebas de los satélites, incluyendo ensayos térmicos, vibraciones y calibración óptica. Actualmente, los satélites están siendo preparados en la Base de la Fuerza Espacial Vandenberg para ser acoplados junto con el telescopio SPHEREx, con el que compartirán lanzamiento en un cohete Falcon 9 de SpaceX.

El despegue está programado para principios de 2025 no antes de finales de febrero. Si todo sigue según lo planeado, los primeros datos científicos de PUNCH podrían llegar antes de que termine el año.

La misión promete marcar un antes y un después en el estudio del viento solar y la heliosfera, proporcionando información clave para comprender cómo la actividad del Sol moldea el espacio que nos rodea.

Referencias y más información:

Más cerca que nunca del Sol: la Parker Solar Probe alcanza su máxima aproximación

Ilustración de la Parker Solar Probe sobrevolando la corona solar
Recreación artística de la Parker Solar Probe cerca del Sol. Créditos: NASA

NASA ha confirmado que la Parker Solar Probe ha completado con éxito su aproximación más cercana al Sol hasta la fecha, alcanzando una distancia récord de 6,1 millones de km de la superficie solar el pasado 24 de diciembre de 2024. Viajando a una velocidad extrema de 190,77 km/s (686.772 km/h), la sonda ha batido su propio récord como el objeto más veloz jamás construido por el ser humano. Dos días después del paso por el perihelio, la nave envió una señal confirmando que todos sus sistemas e instrumentos científicos funcionan correctamente, garantizando la recolección de datos sin precedentes sobre la atmósfera solar.

Este acercamiento, el primero de tres planeados a esta distancia, forma parte de la etapa final de la misión, que ha requerido siete sobrevuelos de Venus para ajustar su órbita. Durante los próximos meses, la nave continuará operando en este régimen extremo, con el siguiente perihelio previsto para el 22 de marzo de 2025. Los datos recogidos en estos pasos ayudarán a resolver algunos de los mayores enigmas de la física solar, desde el calentamiento de la corona hasta la aceleración del viento solar.

Diagrama de la trayectoria de la Parker Solar Probe mostrando su acercamiento récord al Sol
Esquema de la órbita y trayectoria de la sonda Parker Solar Probe. Créditos: NASA

La Parker Solar Probe, lanzada el 12 de agosto de 2018, ha llevado a cabo una serie de sobrevuelos progresivos alrededor del Sol utilizando la gravedad de Venus para acercarse cada vez más a nuestra estrella. Con un diseño revolucionario que le permite soportar temperaturas de hasta 1.400 °C, la nave ha sido capaz de operar en una región del espacio nunca antes explorada de forma directa.

Para sobrevivir en el entorno extremo de la corona solar, la sonda cuenta con un escudo de carbono compuesto de 11,4 cm de grosor, capaz de resistir temperaturas superiores a los 1.000 °C mientras mantiene los instrumentos a una temperatura similar a la de una oficina terrestre. Este Sistema de Protección Térmica (TPS, por sus siglas en inglés) es crucial para permitir que la nave opere a tan solo 9,86 radios solares de la superficie del Sol.

Infografía de los instrumentos de la Parker Solar Probe usados para estudiar el Sol
Instrumentación y sistemas de la sonda Parker Solar Probe de la NASA. Créditos: NASA

Además, la nave está equipada con un sistema de refrigeración activa que utiliza agua desionizada para mantener frías las partes más críticas de los instrumentos científicos. A pesar de estar expuesta a un flujo de radiación 500 veces más intenso que en la Tierra, la sonda ha logrado mantener su operatividad sin fallos significativos.

Uno de los principales objetivos de la Parker Solar Probe es estudiar el viento solar, la corriente de partículas cargadas que fluye constantemente desde el Sol y afecta a todo el Sistema Solar. En su misión, la nave ha detectado fenómenos inesperados, como las estructuras en zigzag conocidas como switchbacks, que parecen originarse en la fotosfera solar y podrían desempeñar un papel clave en la aceleración del viento solar.

Visualización de las estructuras de switchbacks en el viento solar observadas por la Parker Solar Probe
«Switchbacks» o perturbaciones en movimiento del viento solar. Créditos: NASA/GSFC/Adriana Manrique

Los datos obtenidos han confirmado que la región cercana al Sol está prácticamente libre de polvo interplanetario, validando teorías formuladas hace décadas. También se ha logrado identificar la estructura de las ondas de choque que transportan partículas energéticas a través del sistema solar, lo que podría ayudar a predecir tormentas solares con mayor precisión.

La sonda también ha permitido obtener imágenes de la atmósfera de Venus durante sus sobrevuelos. Utilizando su instrumento WISPR, la Parker Solar Probe captó emisiones de radio naturales provenientes de la ionosfera venusina, lo que ha permitido estudiar cambios en la atmósfera del planeta relacionados con la actividad solar.

Imagen de Venus captada por la sonda Parker Solar Probe. Créditos: NASA

Con solo dos sobrevuelos cercanos restantes en su misión primaria, la NASA ya evalúa extender las operaciones de la sonda más allá de 2025 si sigue funcionando correctamente. En paralelo, la agencia espacial se prepara para lanzar el observatorio PUNCH (Polarimeter to Unify the Corona and Heliosphere) en 2025, una misión diseñada para estudiar la conexión entre la corona solar y el viento solar a gran escala.

PUNCH consistirá en cuatro satélites que observarán la evolución del viento solar desde la órbita terrestre, complementando los datos obtenidos por la Parker Solar Probe y la Solar Orbiter de la ESA. Juntas, estas misiones permitirán una visión integral del Sol y su influencia en el espacio interplanetario.


Referencias y más información:

La sonda Solar Orbiter atraviesa la cola del cometa Leonard

La sonda Solar Orbiter actualmente en órbita heliocéntrica, ha sobrevolado la cola del cometa C/2021 A1 Leonard. La misión de la ESA, aunque con gran colaboración de la NASA, tiene como objetivo el estudio del Sol de cerca, pero eso no le ha impedido la posibilidad de hacer ciencia cometaria mientras que reduce su órbita para aproximarse a nuestra estrella, siendo ésta la segunda ocasión en su corta misión que atraviesa una. En junio del pasado año tuvo la fortuna de atravesar la cola del cometa C/2019 Y4 Atlas, descubierto apenas seis meses antes.

Durante el paso por la cola del cometa Leonard, predicho de antemano por los astrónomos del University College of London, el observatorio espacial solar recopiló una gran cantidad de datos científicos del medio interplanetario, que ahora esperan un análisis completo. La sonda Solar Orbiter dispone de gran cantidad de instrumentación científica. Gracias al conjunto de instrumentos Solar Wind Analyzer (SWA), que dispone de un sensor de iones pesados ​​(HIS) pudo medir claramente átomos, iones e incluso moléculas que son atribuibles al cometa en lugar del viento solar. Los iones son átomos o moléculas a los que se les ha quitado uno o más electrones y ahora llevan una carga eléctrica neta positiva. SWA-HIS detectó iones de oxígeno, carbono, nitrógeno molecular y moléculas de monóxido de carbono, dióxido de carbono y posiblemente agua.

El cometa C/2021 A1 Leonard captado por la sonda Solar Orbiter. Créditos: ESA
Continúa leyendo La sonda Solar Orbiter atraviesa la cola del cometa Leonard

Primera toma del Sol del telescopio NuSTAR

El telescopio de la NASA NuSTAR (el telescopio espectroscópico de gama nuclear) es el telescopio de rayos X de alta energía más sensible construído, diseñado para observar el universo profundo y estudiar los agujeros negros super masivos y como se forman los elementos químicos en remanentes de supernovas, desde una órbita ecuatorial a 400 km de la Tierra.

Hace unos días dejó de apuntar el centro de la galaxia para captar una extremidad del Sol y así despejar la incógnita de porqué la temperatura de la capa externa de la atmósfera solar es de un millón de grados centígrados y en la superficie apenas supera los 6 000 grados y captar las hipotéticas nanollamaradas solares que junto las llamaradas normales serían la fuente de las altas temperaturas en la corona de nuestra estrella.

Imagen del Sol, captado por NuSTAR y el observatorio SDO de la NASA.
Imagen del Sol, captado por NuSTAR y el observatorio SDO de la NASA.

La imagen es una composición de los datos de NuSTAR con una imagen tomada por el observatorio solar SDO, mostrando el primero en verde y azul las emisiones solares de alta energía provenientes de las regiones más activas y arcos coronales (el verde corresponde a energías de entre 2 y 3 kiloelectron voltios y el azul, entre 3 y 5 kiloelectron voltios). El rojo corresponde a la luz ultravioleta captada por el SDO y desvela la presencia de material a baja temperatura en la atmósfera solar que está a un millón de grados.

Fuente: http://photojournal.jpl.nasa.gov/catalog/PIA18906