La sonda Solar Orbiter de la Agencia Espacial Europea (ESA) ha captado por primera vez el movimiento del campo magnético en el polo sur del Sol, un fenómeno clave para comprender el ciclo magnético solar. Los datos, obtenidos durante marzo de 2025 y analizados por un equipo del Instituto Max Planck para la Investigación del Sistema Solar (MPS), muestran que las estructuras magnéticas se desplazan hacia el polo a velocidades mayores de lo que predecían los modelos anteriores.
El Sol sigue un ciclo magnético de unos once años, regulado por dos grandes corrientes de plasma que circulan en cada hemisferio. Cerca de la superficie, esas corrientes transportan las líneas del campo magnético desde el ecuador hacia los polos; en el interior, regresan hacia el ecuador, cerrando una vasta “cinta transportadora” de magnetismo solar. Esta dinámica determina la periodicidad de la actividad solar, pero sus mecanismos, especialmente en las regiones polares, seguían siendo desconocidos por la limitada perspectiva que ofrecen las observaciones desde la Tierra o desde la eclíptica.

Lanzada en 2020, Solar Orbiter orbita el Sol en trayectorias elípticas cada vez más inclinadas. En marzo de 2025, por primera vez, la nave se situó a 17 grados respecto al plano orbital de los planetas, lo que permitió observar el polo sur solar con una claridad inédita. La nueva investigación, publicada en The Astrophysical Journal Letters, combina los datos de dos de sus instrumentos principales: el Polarimetric and Helioseismic Imager (PHI), que mide la dirección y velocidad de los flujos de plasma y la intensidad del campo magnético en la fotosfera, y el Extreme Ultraviolet Imager (EUI), que capta las emisiones del ultravioleta extremo en la cromosfera.
Las imágenes del EUI revelan una red de puntos brillantes que traza las huellas del campo magnético en la atmósfera solar. Estas estructuras, originadas en las celdas de convección llamadas supergranulaciones —formaciones de plasma caliente de entre dos y tres veces el tamaño de la Tierra—, delinean los bordes de la red magnética solar. Al combinar ocho días de observaciones, los investigadores pudieron seguir el desplazamiento de esos puntos a medida que el Sol rota, observando que se mueven hacia el polo sur a una velocidad media de entre 10 y 20 metros por segundo.

Este hallazgo contradice las estimaciones anteriores, basadas en observaciones desde la eclíptica, que indicaban un flujo mucho más lento en las latitudes polares. Según los investigadores, las supergranulaciones actúan como trazadores naturales del movimiento del campo magnético y hacen visible, por primera vez, el componente polar del ciclo solar.
Las mediciones del instrumento PHI complementan esta visión al mostrar la distribución de las velocidades y los campos magnéticos fotosféricos en la región polar. Juntas, ambas series de datos ofrecen una imagen más precisa de cómo la materia y el magnetismo interactúan en los extremos del Sol, donde se originan procesos determinantes para la formación del campo magnético global y el comportamiento del viento solar.

Aunque los resultados proporcionan una instantánea detallada del polo sur, representan solo un momento del ciclo solar. Los científicos esperan que las próximas órbitas de Solar Orbiter, cada vez más inclinadas, permitan obtener observaciones prolongadas y desde mayores latitudes, cruciales para comprobar si esta circulación magnética mantiene su velocidad a lo largo de todo el ciclo de once años.
Los datos confirman que el magnetismo solar es más dinámico y uniforme de lo que se creía. Las futuras campañas de Solar Orbiter podrían finalmente esclarecer el papel de los polos en la generación del campo magnético global y, por extensión, en los periodos de máxima y mínima actividad del Sol.
Referencias y más información
- Chitta, L. P. et al. (2025). Supergranulation and Poleward Migration of the Magnetic Field at High Latitudes of the Sun. The Astrophysical Journal Letters, 984, L10. DOI 10.3847/2041-8213/ae10a3
- ESA Solar Orbiter Mission
- Max Planck Institute for Solar System Research
Sigue leyendo en NoSoloSputnik:










