Mars Express y ExoMars TGO cartografían los torbellinos de polvo marcianos

El nuevo catálogo global de dust devils revela vientos de hasta 158 km/h y abre nuevas perspectivas para futuras misiones a Marte.

Durante dos décadas, las sondas europeas Mars Express y ExoMars Trace Gas Orbiter (TGO) (misión conjuntra entre la ESA y Rusia) han observado la superficie de Marte con una constancia sin precedentes. De ese inmenso archivo de imágenes, un grupo de investigadores ha conseguido ahora algo que parecía inalcanzable: rastrear más de mil torbellinos de polvo, conocidos como “dust devils”, para reconstruir los patrones del viento que moldean el clima marciano. El resultado es el primer catálogo global de estos fenómenos en movimiento, un mapa detallado de los vientos del planeta rojo que revela que las ráfagas más intensas soplan mucho más rápido de lo que se creía.

El estudio, publicado en la revista Science Advances y dirigido por el investigador Valentin Bickel, de la Universidad de Berna, representa un salto en nuestra comprensión de la atmósfera de Marte. Hasta ahora, los modelos meteorológicos del planeta se basaban en datos limitados procedentes de unas pocas misiones de superficie y observaciones puntuales desde la órbita. Gracias al análisis automatizado de miles de imágenes obtenidas por las cámaras de Mars Express, lanzada en 2003, y de ExoMars TGO, que llegó en 2016, los científicos han podido rastrear 1.039 torbellinos individuales y determinar la velocidad y dirección de movimiento de 373 de ellos.

En las nuevas imágenes se aprecia cómo los torbellinos se forman, desplazan y desvanecen sobre distintos terrenos, desde llanuras polvorientas hasta cráteres y las laderas de los grandes volcanes marcianos. La comparación de secuencias obtenidas con segundos de diferencia permitió medir su desplazamiento lateral y deducir la velocidad del viento local, que en algunos casos alcanza los 44 m/s (unos 158 km/h). Aunque la atmósfera marciana es tan tenue que una persona apenas sentiría el empuje de ese viento, las velocidades registradas superan las predicciones de los modelos actuales, lo que sugiere que la dinámica superficial de Marte es más activa de lo estimado.

Estos remolinos tienen un papel esencial en la meteorología marciana, pues son responsables de levantar el polvo que oscurece el cielo y modifica la temperatura del planeta. En la atmósfera de Marte, el polvo actúa como un regulador térmico: durante el día puede reflejar la radiación solar y enfriar el suelo, mientras que de noche ayuda a retener el calor. Este mismo polvo también sirve de núcleo para la formación de nubes y, cuando las tormentas se generalizan, contribuye a que el vapor de agua se escape al espacio. En ausencia de lluvia, las partículas permanecen suspendidas durante largos periodos, recorriendo todo el planeta y manteniendo en equilibrio el ciclo del polvo que condiciona su clima.

Los investigadores desarrollaron una red neuronal entrenada para identificar torbellinos en los datos de archivo. Con este sistema, revisaron imágenes tomadas por los instrumentos de ambas sondas desde 2004 hasta 2024. El resultado fue un catálogo que no solo localiza los dust devils, sino que indica su tamaño, dirección y desplazamiento. Los mapas generados muestran que, aunque estos fenómenos aparecen en casi todas las regiones del planeta, son especialmente frecuentes en Amazonis Planitia, una vasta llanura situada al noroeste del ecuador marciano cubierta por finas capas de polvo y arena. También se observan torbellinos en los flancos de los grandes volcanes como Olympus Mons y Arsia Mons, donde las diferencias térmicas entre las zonas altas y el entorno favorecen su formación.

La mayor parte de los torbellinos se produce durante la primavera y el verano marcianos, entre las 11:00 y las 14:00 hora solar local, coincidiendo con el máximo calentamiento del suelo. Este comportamiento es similar al observado en regiones áridas de la Tierra, donde los remolinos se originan por diferencias de temperatura entre el suelo y el aire cercano. En Marte, sin embargo, la falta de humedad y la escasa densidad atmosférica hacen que estos torbellinos puedan alcanzar tamaños mucho mayores, algunos de varios cientos de metros de altura.

El hallazgo no solo amplía el conocimiento del clima de Marte, sino que tiene consecuencias prácticas para futuras misiones. Los torbellinos y tormentas de polvo afectan directamente al rendimiento de los paneles solares de los vehículos robóticos. El polvo acumulado puede reducir la energía disponible e incluso dejar inoperativos a los exploradores, como ocurrió con el rover Opportunity en 2018. Sin embargo, los dust devils también pueden tener el efecto contrario: el viento que generan ha limpiado ocasionalmente los paneles de rovers como Spirit y InSight, prolongando su vida operativa. Con el nuevo catálogo, los ingenieros podrán prever con más precisión las zonas y épocas con mayor probabilidad de actividad eólica, lo que servirá para planificar aterrizajes y operaciones en la exploración de Marte.

El equipo de investigación destaca que estos datos ayudan a perfeccionar los modelos atmosféricos del planeta y permiten prever la cantidad de polvo que podría depositarse sobre un futuro rover o módulo de aterrizaje. Al conocer mejor la dirección predominante de los vientos en una región, se pueden diseñar estrategias de limpieza más efectivas o sistemas de orientación de los paneles solares para reducir la acumulación de partículas. Además, el catálogo está disponible públicamente, lo que permitirá que otros grupos de investigación lo utilicen para contrastar modelos o estudiar la evolución del clima marciano a lo largo del tiempo.

Resulta especialmente notable que las sondas utilizadas no fueron diseñadas para medir el viento. El logro del equipo consistió en aprovechar un artefacto del propio proceso de obtención de imágenes. Tanto en Mars Express como en ExoMars TGO, las cámaras capturan varias tomas del mismo punto de la superficie en distintos canales de color o ángulos de visión, con una diferencia temporal de segundos entre cada una. Si algo se mueve entre una toma y otra, como un torbellino de polvo, se produce un leve desplazamiento en su posición o color al combinar las imágenes. Lo que normalmente se considera un “ruido” o error de alineación fue convertido en una herramienta de medida: la distancia entre las posiciones sucesivas permitió calcular la velocidad de desplazamiento del fenómeno.

En el caso de Mars Express, cada secuencia de observación incluye hasta nueve canales de imagen, con intervalos de 7 a 19 segundos entre cada uno. Durante ese breve tiempo, un torbellino puede avanzar decenas de metros, lo suficiente para estimar su velocidad. En ExoMars TGO, las cámaras capturan dos vistas con una separación de hasta 46 segundos, lo que facilita observar desplazamientos mayores y validar las mediciones obtenidas con la otra sonda. Con estos datos combinados, los investigadores lograron reconstruir los movimientos tridimensionales de los dust devils, incluyendo sus oscilaciones laterales y cambios de velocidad durante su desarrollo.

El estudio pone de relieve cómo el análisis de archivo y la aplicación de técnicas de inteligencia artificial están abriendo nuevas vías en la investigación planetaria. La posibilidad de medir directamente los vientos cerca de la superficie es fundamental para comprender la circulación atmosférica y los procesos de erosión que modelan el paisaje marciano. A largo plazo, estos resultados permitirán refinar las previsiones meteorológicas locales y mejorar la seguridad de futuras misiones tripuladas, donde la acumulación de polvo podría comprometer tanto los sistemas energéticos como la visibilidad y las comunicaciones.

Marte, con sus inmensos desiertos y tormentas globales, sigue siendo un laboratorio natural para estudiar cómo la dinámica atmosférica evoluciona en un planeta sin océanos ni una atmósfera densa. Los remolinos de polvo, que durante años se consideraron simples curiosidades visuales, se revelan ahora como una de las claves para entender la respiración diaria de su atmósfera. Gracias a la paciente observación de las sondas de la ESA y al ingenio de los científicos, cada nuevo torbellino detectado nos ofrece una pequeña ventana a los mecanismos que gobiernan el clima del planeta rojo.

Referencias y más información

Sigue leyendo en NoSoloSputnik:

Deja un comentario

Este sitio utiliza Akismet para reducir el spam. Conoce cómo se procesan los datos de tus comentarios.