Ondas atmosféricas diurnas podrían sostener la superrotación venusiana

Un nuevo análisis de datos de Venus Express y Akatsuki revela que las mareas térmicas diurnas podrían ser fundamentales para sostener la superrotación en la atmósfera de Venus

La superrotación de la atmósfera de Venus es uno de los fenómenos más singulares del Sistema Solar. Las nubes situadas en torno a 70 km de altura se desplazan a más de 100 m/s y completan una vuelta al planeta en unos cuatro días terrestres, mientras que Venus tarda 243 días en rotar sobre su eje. Comprender el origen de esta dinámica extrema es esencial para desarrollar modelos de circulación global aplicables tanto a Venus como a exoplanetas con atmósferas densas. Un nuevo estudio científico presenta un análisis detallado de las mareas térmicas, ondas atmosféricas generadas por el calentamiento solar que se propagan en la atmósfera, y su contribución al transporte de momento que alimenta estos vientos.

El trabajo combina dieciséis años de mediciones procedentes de Venus Express y de Akatsuki. La primera registró perfiles de viento en el hemisferio sur mediante el seguimiento de nubes entre 2006 y 2014, mientras que la segunda ha continuado estas observaciones desde 2015 con cámaras sensibles al ultravioleta y al infrarrojo. El conjunto resultante es uno de los registros temporales más extensos de la atmósfera superior venusiana y permite investigar la estructura vertical y latitudinal de las ondas producidas por la iluminación diurna del planeta.

El estudio identifica variaciones periódicas en la velocidad de los vientos que corresponden al modo diurno de las mareas térmicas, una onda cuya fase está fijada por el calentamiento máximo sobre el lado iluminado. Esta señal se observa desde 50 hasta 90 km de altura, lo que indica que influye en todo el espesor de la capa de nubes. La amplitud y el desfase con la hora local sugieren que este modo transporta de forma eficiente momento angular hacia niveles superiores, contribuyendo a sostener la superrotación. Hasta ahora se pensaba que el modo semidiurno era el componente dominante, pero los resultados muestran que el modo diurno puede desempeñar un papel comparable o incluso mayor.

Esta interpretación se apoya en comparaciones con modelos de circulación general. Las ondulaciones detectadas en los datos presentan la configuración espacial y el patrón temporal esperados para una marea térmica generada por la absorción de radiación solar en la parte alta de las nubes. Las variaciones horarias del viento concuerdan con simulaciones que reproducen el ciclo térmico diurno y la propagación vertical de estas ondas. La coherencia entre los dos conjuntos de observaciones, separados casi dos décadas y obtenidos con instrumentos distintos, refuerza la consistencia del resultado.

La presencia persistente de estas mareas térmicas ayuda a explicar varios rasgos característicos de la dinámica venusiana. El máximo de los vientos tiende a situarse en la tarde local, un comportamiento que coincide con el patrón de fase de la onda diurna. La amplitud del viento varía con la latitud de forma compatible con la estructura global de la marea. Además, las variaciones observadas durante el ciclo solar y a lo largo de los años muestran que la superrotación no es completamente estable, sino que responde a cambios en el balance térmico de la atmósfera superior.

Los autores señalan que estas conclusiones son posibles gracias al rango de alturas accesible con las cámaras de seguimiento de nubes. Venus Express observó en longitudes de onda ultravioleta y visibles, mientras que Akatsuki emplea tanto el ultravioleta como el infrarrojo térmico. La combinación permite reconstruir perfiles verticales del viento a partir del desplazamiento de detalles en bandas diferentes. La continuidad en el tiempo también ha sido fundamental para separar las señales periódicas de las fluctuaciones meteorológicas propias del planeta.

Este trabajo se suma a estudios previos que proponían un mecanismo combinado para la superrotación basado en ondas atmosféricas, arrastre desde niveles inferiores y transporte de momento angular. Al mostrar que el modo diurno puede ser más importante de lo que se pensaba, se refuerza la idea de que el forzamiento solar directo, y no solo el semidiurno ni el arrastre zonal profundo, es un componente esencial del sistema dinámico de Venus. A la espera de nuevas mediciones, el análisis amplio y consistente de estas mareas térmicas ofrece un marco más sólido para interpretar la circulación del planeta.

En NoSóloSputnik! puedes ampliar información sobre el planeta en la página dedicada a Venus, donde describimos sus características atmosféricas y su estructura global.

Referencias y más información

Deja un comentario

Este sitio utiliza Akismet para reducir el spam. Conoce cómo se procesan los datos de tus comentarios.