La diferencia entre Ío y Europa apunta a su formación, no a una pérdida extrema de agua

Un estudio reciente analiza la evolución temprana de los satélites de Júpiter y muestra que los escenarios de escape atmosférico extremo no bastan para explicar el contraste actual entre Ío y Europa, reforzando la importancia de las condiciones de formación en el entorno joviano.

Comparación de los satélites Ío y Europa de Júpiter, mostrando la superficie volcánica de Ío y la superficie helada y fracturada de Europa.
Comparación de Ío y Europa. Créditos: NASA/JPL/DLR

Ío y Europa, dos de los principales satélites de Júpiter, presentan hoy una diferencia extrema en composición y actividad geológica. Mientras Europa conserva una gruesa capa de hielo y un océano global bajo su superficie, Ío es un cuerpo rocoso, muy denso y dominado por un volcanismo intenso. Desde hace años se plantea si ambos mundos pudieron formarse de manera similar y divergir después, o si esa diferencia ya estaba marcada desde su origen. Un trabajo teórico reciente aporta nuevos argumentos a favor de esta segunda opción.

En los últimos años ha ganado peso la hipótesis de que Ío y Europa se formaron inicialmente ricos en agua y que Ío perdió después sus volátiles debido al calentamiento y al escape atmosférico durante las primeras fases del sistema joviano. El nuevo estudio examina ese escenario con modelos físicos detallados y concluye que resulta difícil sostenerlo incluso bajo condiciones especialmente favorables a la pérdida de agua.

El problema del contraste entre Ío y Europa

La diferencia entre Ío y Europa ha sido uno de los principales retos para los modelos de formación de satélites. Ambos cuerpos tienen tamaños comparables y orbitan relativamente cerca uno del otro, pero sus densidades y estados actuales son muy distintos. Europa presenta una densidad media baja, compatible con una fracción significativa de agua, mientras que Ío alcanza valores cercanos a 3.500 kg/m³, propios de un cuerpo mayoritariamente rocoso.

Explicar este contraste únicamente mediante procesos posteriores a la formación requiere mecanismos capaces de eliminar grandes cantidades de agua de Ío sin afectar de forma equivalente a Europa. Entre ellos, la pérdida atmosférica impulsada por el calor temprano del entorno de Júpiter ha sido una de las propuestas más debatidas en la literatura científica reciente.

Cómo se modela la pérdida de agua en los satélites jovianos

El estudio, firmado por Yannis Bennacer, Olivier Mousis y Vincent Hue, analiza la evolución temprana de Ío y Europa durante sus primeros millones de años. El modelo reconstruye cómo se formaron ambos satélites alrededor de Júpiter, cómo su interior se calentó debido a distintas fuentes de energía y cómo ese calentamiento pudo liberar agua hacia la superficie.

El punto de partida es que los satélites pudieron acrecer a partir de silicatos hidratados, minerales que incorporan agua en su estructura cristalina. A medida que el interior se calienta, estos minerales se deshidratan y liberan agua. Esa agua puede migrar hacia la superficie y formar océanos y atmósferas temporales, que quedarían expuestas a la pérdida hacia el espacio si la temperatura superficial es elevada y la gravedad insuficiente para retenerlas.

El modelo explora un amplio conjunto de escenarios. Se consideran distintos modos de acreción, desde el crecimiento progresivo a partir de partículas pequeñas hasta impactos de cuerpos de mayor tamaño, así como diferentes duraciones del proceso y posiciones orbitales dentro del entorno joviano. En cada caso se calcula cuándo comienza la deshidratación del interior, cuánta agua se libera y si los mecanismos de escape pueden eliminarla de forma eficaz.

Por qué Ío no pudo perder un océano primitivo

Los resultados muestran una diferencia clara entre ambos satélites. En el caso de Europa, la deshidratación significativa del interior se produce cuando la fase más energética del sistema ya ha pasado. Para entonces, la irradiación procedente de Júpiter ha disminuido y la superficie no puede mantener océanos expuestos ni atmósferas densas durante largos periodos. En ese contexto, la pérdida de agua es limitada y Europa conserva la mayor parte de sus volátiles en la mayoría de escenarios plausibles.

En Ío, el resultado es mucho más restrictivo. Incluso suponiendo un escape atmosférico extremadamente eficiente, el modelo indica que el satélite no puede eliminar por completo un océano primitivo si este se forma tras la deshidratación interna. Una vez que el entorno se enfría y el disco circumjoviano se disipa, cualquier agua restante queda protegida en forma de hielo y deja de estar accesible a los mecanismos de escape considerados.

Para reproducir la elevada densidad actual de Ío, cercana a 3.500 kg/m³, el estudio exige condiciones muy específicas. Ío tendría que haberse formado muy cerca de Júpiter, o haber crecido en un intervalo de tiempo extremadamente corto, o haber acumulado gran parte de su masa mediante impactos energéticos. Aun así, estos escenarios no explican de forma sólida una pérdida completa de agua si el material original contenía silicatos hidratados.

Un origen distinto desde la formación

Esquema de la formación de los satélites galileanos de Júpiter mostrando cómo los materiales hidratados conservan agua en la región de Europa y se deshidratan antes de alcanzar Ío.
Esquema del disco circumjoviano durante la formación de los satélites galileanos. Los materiales hidratados que dieron lugar a Europa conservaron su contenido en agua, mientras que los mismos materiales se deshidrataron al cruzar la línea de deshidratación de los filosilicatos antes de incorporarse a Ío, dando lugar a un satélite intrínsecamente seco. Créditos: Southwest Research Institute

A partir de estos resultados, los autores proponen una alternativa más coherente. Ío habría acrecido principalmente a partir de material anhidro, pobre en agua, en una región del disco joviano situada por debajo de la línea de deshidratación de los filosilicatos. En ese entorno, el agua liberada por los minerales no se incorporaría al satélite, mientras que más lejos, en la región donde se formó Europa, sí podría retenerse.

Este planteamiento desplaza el origen del contraste entre Ío y Europa desde su evolución posterior hacia sus condiciones iniciales de formación. No serían dos cuerpos que siguieron trayectorias similares y luego divergieron, sino satélites que se formaron a partir de materiales distintos en regiones térmicamente diferenciadas del entorno de Júpiter.

Implicaciones para la exploración de Europa

El estudio tiene también implicaciones observacionales directas. Si Europa no perdió una fracción importante de su agua por escape atmosférico, la composición isotópica de ese agua debería reflejar la del material primitivo que la formó. En particular, el cociente deuterio-hidrógeno podría ser comparable al medido en asteroides hidratados y condritas carbonáceas.

Las futuras mediciones de Europa Clipper y de la misión JUICE permitirán poner a prueba esta predicción y aportar nuevas restricciones sobre el origen de los satélites galileanos. Estos datos ayudarán a discriminar entre escenarios de formación y a entender mejor cómo se distribuyó el agua en el entorno del Júpiter primitivo.

Aunque el modelo adopta supuestos que favorecen la pérdida de volátiles, los resultados indican que Ío no puede despojarse fácilmente de un océano primitivo. En conjunto, el trabajo refuerza la idea de que la configuración actual del sistema joviano interior está determinada, en gran medida, por las condiciones de formación y no por procesos extremos de erosión posteriores.

Referencias y más información